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An e$cient method is derived for the calculation of the acoustic "eld of a rotating source.
The technique is used to study the e!ect of variations in loading and thickness distributions
on the noise radiated by subsonic and supersonic propellers in forward #ight. Results are
compared with previously published asymptotic analyses and are found to be accurate.
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1. INTRODUCTION

The sound "eld radiated by rotating systems such as propellers and helicopter rotors has
a rich structure, displaying a wide range of complex behaviour. This complexity makes the
study of such systems both scienti"cally challenging and technologically important.
Rotating systems are widely used for aircraft propulsion and the environmental
implications of far"eld noise and structural e!ects in the near"eld mean that the acoustics of
such systems are important in the design and operation of most aircraft. At the same time,
the complexity of such systems means that predicting the radiated acoustic "eld and its
underlying physical behaviour is not a trivial task. Propeller noise has been of interest for
almost as long as there have been aeroplanes with work on its theoretical prediction dating
back to at least 1919 [1]. Since then, the studies of Gutin [2] and of Garrick and Watkins
[3] have been important advances in the "eld. It is the work of Lighthill [4], however, which
forms the basis of modern aeroacoustics and of present methods for the prediction of noise
from aircraft powerplant. The developments of that theory which are used in acoustical
calculations for solid bodies [5, 6] have been reworked for improved numerical
implementation, the methods of Farassat and co-workers [7, 8] and of Hanson [9] being
the most important in this regard.

The main methods of propeller noise prediction, however, are &&single-point'' techniques.
They provide a means of predicting the noise at one point at a time. Even with high-speed
computing facilities, they do not allow the detailed investigation of the properties of the
acoustic "eld around a realistic rotating source. The principal reason for this is the number
of points at which the "eld must be calculated if its structure is to be adequately resolved.
For any serious investigation, the "eld must be resolved at scales much shorter than one
acoustic wavelength. For a modern high-speed rotor, this is an extremely demanding task.

For this reason, a large number of approximate methods have been developed, many of
them based on asymptotic analysis [10}12]. These give results which retain most of the
accuracy of full numerical evaluation of the acoustic integrals but require much less
computation. Furthermore, they also indicate explicitly the dependence of the acoustic "eld
on #ight and source parameters. For example, in the far "eld it can be shown that the blade
tip dominates the noise of subsonic rotors [10] while the Mach radius dominates supersonic
rotor noise [11]. Such analyses yield information about the physics of the system which
22-460X/00/220255#23 $35.00/0 ( 2000 Academic Press



256 M. CARLEY
would be di$cult to obtain in any other manner and have proven extremely useful both
scienti"cally and technologically.

Another development, which forms the basis of the work presented here, has been the
study of exact solutions of model problems which contain the essential details of the real
system. In particular, the work of Chapman on the sound "eld of supersonic rotors [13] and
on the properties of the Green's function for the noise radiated by a rotating source [14]
have demonstrated the richness of structure possessed by the acoustic "eld of spinning
sources. In a later paper [15], Chapman presents a novel method for the fast, exact,
numerical calculation of the "eld radiated by certain classes of rotating source distributions.
The method reduces the two-dimensional acoustic integral to a one-dimensional integral,
using a co-ordinate transformation. The restrictions on the approach are that it applies only
to a stationary propeller of even blade number and that the source strength on the blades
does not vary with radius. The method has since been extended by Carley [16] to include
forward motion and odd blade number. The purpose of the present paper is to extend the
method to include arbitrary source distributions and hence to make the method suitable for
industrial applications as well as for the study of the general properties of the acoustic "eld
of rotating sources.

2. ACOUSTIC MODEL

A method exists for the e$cient numerical calculation of the sound "eld of a rotating
source when the source distribution is independent of source radius [15, 16]. In this section,
it is shown how this work can be related to the general problem of a propeller of arbitrary
source distribution. The standard acoustic integrals are "rst derived and then manipulated
into a form suitable for application of the previously developed method. The system to be
studied is shown in Figure 1. A propeller of radius a rotating at angular velocity X operates
Figure 1. Propeller noise model and co-ordinates
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at a #ight Mach number M
=
. Co-ordinates are chosen so that the propeller translates in the

positive z direction or is stationary in a mean #ow in the negative z direction. In both cases,
the observer is stationary. Cylindrical co-ordinates (r, h, z) are used. The blade geometry
and surface pressure distributions give rise to &&thickness'' and &&loading'' noise respectively.
Since the source terms are periodic, they can be decomposed into Fourier series in blade
azimuth with the nth term contributing s

n
(r
1
) exp[ jn(h

1
!Xt)] where the propeller co-

ordinates are (r
1
, h

1
). Given the Fourier coe$cients corresponding to the operating

conditions and propeller geometry, the problem of calculating the acoustic "eld then
reduces to the evaluation of a set of integrals over the propeller disc. The fundamental
theory for the radiated noise is that of Goldstein [6]:
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where A is the surface of the source, in this case the propeller disc, q is the emission time of
the sound reaching the observer at time t, v

n
is the surface normal velocity and F is the force

applied to the #uid. The #uid density and speed of sound are o and c respectively.
The Green's function is that given by Garrick and Watkins [3]:
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In the frequency domain, for a source with time dependence exp(!jut)
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The phase and amplitude radii p and S depend on the case being considered. For
a translating propeller, co-ordinates are chosen such that its axial displacement is
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When the propeller and observer are stationary in a uniform #ow
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with the propeller disc lying in the plane z"0.
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The time derivative D/Dt is

D
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stationary fluid,

moving fluid.

Inserting the source de"nitions into equation (1) and using the shifting property of the
Dirac delta to perform the integration in q, the noise due to the nth harmonic of thickness
and loading is
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Here h
n
is the nth harmonic of the propeller blade geometry, with !jnXh

n
exp(!jnXt) the

velocity perturbation. The rotor hub of radius a
0

is assumed to generate no noise.
Non-dimensionalizing the problem so that pressure is scaled on oc2, length on a and

velocity on c:
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and
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Here r
0

is the non-dimensional hub radius. The force F
n
has been decomposed into thrust

and drag terms g
n
and q

n
, respectively, radial forces being neglected. The blade tip rotational

Mach number is M
t
"Xa/c and the acoustic wavenumber k"nM

t
. These results are the

complex conjugates of equations (21) and (23) of Garrick and Watkins' report [3].

2.1. CALCULATION OF THE ACOUSTIC FIELD

The problem to be dealt with now is that of e$ciently evaluating the integrals of equation
(7) to allow the acoustic "eld to be studied in detail. The objective is the exact calculation of
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I, ¸ and Q in a large enough "eld and at su$ciently "ne resolution to show the structure of
the acoustic "eld. This means that the "eld must be calculated on a mesh with
a characteristic size of considerably less than one acoustic wavelength. The method which is
chosen must also be e$cient enough to allow the "eld to be evaluated su$ciently quickly to
permit parametric studies to be conducted in a reasonable time. Such a method has been
developed previously for a restricted subproblem of that which is addressed here and the
purpose of this section is to show how it can be used in evaluating the acoustic integrals of
equation (7).

Only the thickness noise integral I is examined for the moment, ¸ and Q being treated by
an analogous method. First, a new integral I

c
is de"ned:
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This is the sound radiated by a sub-disc of radius r
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with h
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Recognizing the h
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-integral of equation (7a), I can be rewritten as
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Finally, it is noted that
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and the tip Mach number M
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t
. Note that since

the wavenumber k depends on M
t
, the scaling will also a!ect the phase term in the integral,

so that k is replaced by kr
1
.

The acoustic integral I is now in a form which permits application of the method
developed previously by Chapman [15] and extended by Carley [16]. Using this technique
I
c

can be calculated e$ciently on a line of constant r2a &&sideline'' in propeller
noise jargon*as a set of one-dimensional integrals. The problem of evaluating the
two-dimensional integral of equation (7a) at single points over some region is replaced by
that of evaluating I

c
(r
1
) on sidelines and then integrating I

c
(r
1
)h@

n
, a set of one-dimensional

integrals the "rst of which can be performed very e$ciently.
The "rst stage in the method is to transform the co-ordinates to centre on the sideline at r.

Figure 2 shows the new co-ordinates in the source plane. The axial co-ordinate z remains
unchanged while new co-ordinates (r

2
, h

2
) are centred on the sideline. The relationship



Figure 2. Sideline co-ordinate transformation.
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between the old and new co-ordinate system is easily found:
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A recursion relation has been given for J(r, r
2
) when n is even [15] and "nite and in"nite

series forms have also been derived [16] and are summarized in the appendix. In the case
where n is odd, necessary both for propellers of odd blade number and for the calculation of
noise radiated by unsteady sources on propellers of even blade number [17], the de"nition
of I

c
(1) is modi"ed slightly:
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The inclusion of the term r~1
1

in the de"nition of J (r, r
2
) allows the use of the formulae

previously derived [16] and given in Appendix A.
Thus, to conduct a parametric study of the e!ect of variations in the source distributions

h
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, g
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and q

n
at given operating conditions the integral I

c
(r
1
) and the analogous loading

noise integrals ¸
c

and Q
c

are precomputed over the desired region. This can be
accomplished quite e$ciently by computing all three together as most of the relevant
quantities (S and p for example) are the same in each case. To calculate the "eld for a given
source distribution, the integration of equation (9) is then carried out. If only the directivity
on a sideline is required, this can obviously be calculated much more quickly than for the
whole "eld, but the procedure is identical.

3. THE STRUCTURE OF ROTATING SOUND FIELDS

The results presented later in this paper form a parametric study of the e!ect of variations
in operating conditions and source distributions on the acoustic "eld of a rotating source.
For comparison with previously published analytical results, particular geometry and
loading distributions have been chosen (section 3.1) but the acoustic integrals for these
sources are calculated exactly. The "rst paper to present exact results of the type shown here
was that of Chapman [15], but a number of other authors have presented work which
demonstrates important aspects of the behaviour of the acoustic "eld under various
conditions. Most of these analyses have been limited to the far "eld and many of them have
used asymptotic methods to derive simple formulae for the behaviour of the "eld while
retaining much of the accuracy of the original integrals. It is known that in both the far "eld
[10, 11] and the near "eld [12], the noise from subsonic rotors is dominated by the blade tip
while for supersonic rotors it is controlled by the Mach radius, the point on the blade which
approaches a "eld point at sonic velocity. In the case of a subsonic propeller, the relevant
parameter is the radial source gradient near the blade tip and the source distributions
chosen for the parametric study of section 4 re#ect this.

It is noteworthy, however, that for both subsonic and supersonic propellers the "eld is
divided by the sonic radius b/M

t
, the point on the blade with unit helical Mach number. The

near"eld analysis of Peake and Crighton [12] has demonstrated the existence of three
distinct regions around a subsonic propeller, the near "eld r(b/M

t
, the far "eld r'b/M

t
and a transition region of width order n~2@3 around the sonic radius. This behaviour was
also seen in the stationary disc results of Chapman [15] and the translating propeller results
of Carley [16]. The "eld is divided by the sonic radius. If the whole propeller disc lies within
this radius, b/M

t
'1, the acoustic energy spirals many times around the propeller axis

before &&tunnelling'' into the far "eld which is very weak. If part of the propeller disc lies
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more than about half an acoustic wavelength outside the Mach radius, it can radiate
directly into the far "eld with no energy being lost in tunnelling through the transition
region. This gives the very strong beaming pattern characteristic of supersonic rotors [18].
If the propeller tip is only slightly supersonic, it does not penetrate far into the transition
region and there is no strong beaming. The results to be presented in section 4 will
demonstrate these e!ects and the dependence of the "eld on the source distribution.

3.1. SOURCE EFFECTS

For comparison with the subsonic propeller asymptotic theory [10], a source
distribution is chosen which has a particular radial dependence. It is known that in the far
"eld, the blade tip dominates the noise and that the amplitude of the harmonic depends on
a parameter l where the source strength s (r

1
) near the tip varies as

s&S(1!r
1
)l

with S being a constant. For this reason, the source distributions to be used later are of the
form

s"(l#1)(l#2)(1#r
1
)l, (15)

where the factor (l#1)(l#2) normalizes the total area-weighted source strength,
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ensuring that variations in overall source strength do not mask the underlying acoustical
e!ects. This means that, for example, the loading noise "elds are compared on the basis of
constant net thrust.

The e!ect of the parameter l is shown in Figures 3 and 4 which plot the integrand
I
c
(r
1
)s@(r

1
) for a subsonic and a supersonic propeller respectively. In both cases, the observer

is close to the propeller plane at r"2)5. In the subsonic case, M
t
"0)7, M

=
"0)2, shown in

Figure 3, the tip dominance is clearly shown. A l"1, the integrand is "nite at the tip but at
larger l the integrand disappears at the tip and its maximum is much smaller; the curve also
encloses a much smaller area. In the supersonic rotor case, M

t
"1)05, M

=
"0)8, shown in

Figure 4, the very di!erent behaviour to be expected from the asymptotic theory [11] is
evident. Increasing l has little e!ect on the area under the curve and the peaks in I

c
(r
1
)s@(r

1
)

are all of the same order of magnitude, independent of l.

4. ACOUSTIC FIELDS

The acoustic integrals have been calculated for a number of di!erent values of l for both
thickness and loading noise. In the loading noise case, blade twist has been included by
decomposing the blade forces into thrust and drag terms (section 4.2). The integrals have
been calculated over the region 0)r)3, !3)z)3 at a resolution which depends on
the operating conditions. The shortest wavelength j

min
in the far "eld can be estimated from

the propeller tip and #ight Mach numbers:

j
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Figure 3. Integrand I
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) for M

t
"0)7, M

=
"0)2, l"1: solid; l"2: dashed; l"3: dotted. a: real part; b:

imaginary part.
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and the resolution for the calculations is set at some fraction of this value (usually
one-tenth). This represents an acceptable compromise between the need for adequate
resolution of the "eld structure and the desire to minimize computation time. The
calculated "elds were spot-checked against the full two-dimensional integrals of equation
(6), care being taken to check in regions of both high and low amplitudes.
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"0)8, l"1: solid; l"2: dashed; l"3: dotted. a: real part; b:

imaginary part.
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From the large number of conditions for which calculations have been performed, two
cases have been chosen as exemplary and the same calculations have been performed for
each. The "rst is that of a subsonic propeller with M

t
"0)7 and M

=
"0)2, roughly take-o!

conditions. The second case is that of a supersonic propeller with M
t
"1)05 and M

=
"0)8.

In both cases, the harmonic number n"16. Between them, the results for these two
operating conditions display most of the behaviour to be expected from the asymptotic
theories.
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4.1. THICKNESS NOISE

Figure 5 shows thickness noise "elds for the subsonic propeller with l"1, 2, 3. The same
contour levels have been used in each case to make changes in the "eld more apparent. The
obvious e!ect of increasing l, the source parameter, is that the region of the "eld enclosed by
the contours shrinks rapidly. In each case, the "eld is strongest near the propeller plane and
weakens near the axis of rotation; its absolute magnitude, however, depends on the
on-blade source term and this is of concern in noise control and prediction. The e!ect of
increasing l from 1 to 3 is to reduce the size of the lobe (de"ned by the outermost contours)
by about half. Since, from equation (15), the integrated source strength is constant, this
change can only be due to the change in the source structure and in particular to its
variation near the blade tip, as predicted by asymptotic theories. This observed variation in
the exact numerical results can be readily compared with that predicted by the analytical
formulae derived from asymptotic analysis. The data are presented for conditions in which
the blade tip is subsonic so that the theory should be accurate.

The relevant asymptotic theory is that of Parry and Crighton [10] which predicts that the
far"eld noise is tip-dominated and that the relevant parameter is the tip source gradient,
controlled by l. In the notation of this paper and noting that, from equation (15)
S"(l#1)(l#2), the harmonic strength in the far "eld p

n
varies as
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Figure 6 shows the value of p
n
as a function of z at r"3 for the values of l used in Figure

5. The lobe width for a given value of l can be found by tracing a horizontal line across the
curves of Figure 6; the value of z at each intersection indicates the width of the lobe in
Figure 6. For example, the value of p

n
at l"3, z"1 is matched by the l"1, 2 curves at

z"2)45 and 1)8, respectively, indicating accurately the lobe width to be seen in Figure 6.
The asymptotic theory accurately predicts the shrinking of the far"eld lobe with increasing
l as might be expected. It could also, of course, be used to predict the variation of any other
feature of the "eld with the source parameter l.

In the case of a supersonic propeller, the behaviour is quite di!erent; the blade tip is no
longer dominant and the far"eld amplitude is controlled by the Mach radius r*, the point
on the propeller blade which approaches a "eld point at sonic velocity:
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=
cos/)

M
t
sin/

.

In this case, the asymptotic theory [11] predicts a di!erent variation in the far"eld
harmonic strength:
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Figure 5. Thickness noise "elds for M
t
"0)7, M

=
"0)2. (a) l"1, contour levels $10~6, $10~5, $10~4;

(b) l"2, contour levels $10~6, $10~5, 10~4; (c) l"3, contour levels $10~6, 10~5, 10~4.
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The directivity patterns in Figure 7 are characteristic of a supersonic rotor [15, 18, 19]
with a strong beaming pattern in the rotor plane which has been stretched backwards by the
axial motion [16]. If the Mach radius r*(1 the "eld is dominated by the source at that
point, as in equation (17). This is true in the frontal lobe of the directivity and it will be noted



Figure 6. Asymptotic amplitude factor p
n
for M

t
"0)7, M

=
"0)2, l"1, solid; l"2, dashed; l"3, dash-dot.
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that the size of the lobe shrinks much less rapidly with increasing l than in the
subsonic rotor case. The operating conditions (M

=
, M

t
) are identical in each of the

three contour plots and so r* does not change. The only di!erence between the three
cases is now the value of s(r*). Figure 8 shows s (r*) for 0)z)3 at r"3. The change in
s(r*) with z explains the weak variation in the main lobe size with changes in l. The source
strength at r* simply does not change much with l and its e!ect is quite small.

In summary, the thickness noise results are as would be expected from the far"eld
asymptotic theories, with the expected variation in "eld shape and strength as a function of
the source characteristics.

4.2. LOADING NOISE

To demonstrate the application of the technique to the problem of calculating the loading
noise "eld of a propeller, the case of a twisted blade with loading magnitude given by s(r

1
)

will be considered. Figure 9 shows a blade section at some radial station, r
1
. The force on the

blade is f and it is aligned at a twist angle a to the #ight direction. Any twist distribution a(r
1
)

could be used but here the blade section will be assumed to be aligned with the
advance helix. Then a"tan~1(r

1
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t
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=
) and the components of thrust and drag are
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where M
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)1@2, the section helical Mach number. A similar derivation can be

found in the near"eld asymptotic analysis of Peake and Crighton [12]. It is re-emphasized



Figure 7. Thickness noise "elds for M
t
"1)05, M

=
"0)8. (a) l"1, contour levels $10~3, $10~2, $10~1;

(b) l"2, contour levels $10~3, $10~2, $10~1; (c) l"3, contour levels $10~3; $10~2, $10~1.

268 M. CARLEY
that due to the normalization of the source term introduced in equation (15), the results
presented here are all for propellers with equal total loading.

The acoustic integrals are calculated in the same manner as for the thickness noise.
Figure 10 shows a section through the loading noise "eld for the subsonic propeller. As in
the thickness noise case, the lobe in the radiated "eld shrinks rapidly with l. In Figure 11,
showing sections perpendicular to the propeller axis at z"0)1, the &&acoustic orange'' of



Figure 8. Source function s (r*) for M
t
"1)05, M

=
"0)8 as a function of z at r"3; solid line, l"1; dashed line,

l"2; dot-dashed line l"3.

Figure 9. Blade section at twist angle a.
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earlier work [15, 16] becomes apparent. The near "eld is made up of segments with almost
straight boundaries which start to bend as the far "eld is reached. Acoustic energy spirals
around the propeller axis many times before &&tunnelling'' into the far "eld where it radiates
quite weakly. As might be expected by now, as l increases, the far "eld becomes much
weaker with a faster decay around the sonic radius b/M

t
"1)4. In the supersonic propeller
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case shown in Figures 12 and 13, the "eld is quite di!erent from the results presented in
earlier work [16]. In that earlier work, a comparable result for an untwisted blade with
l"0 was published and the di!erence is in the transition across the disc boundary. In the
case of pure thrust, with no decay near the tip, the pressure "eld is discontinuous with
Figure 10. Loading noise "elds for M
t
"0)7, M

=
"0)2, h"0. (a) l"1, contour levels $10~5, $10~4,

$10~3; (b) l"2, contour levels $10~5, $10~4, $10~3; (c) l"3, contour levels $10~5, $10~4, $10~3.



Figure 11. Loading noise "elds for M
t
"0)7, M

=
"0)2, z"0)1. (a) l"1, contour levels $10~5, $10~4,

$10~3; (b) l"2, contour levels 10~5, 10~4, 10~3; (c) l"3, contour levels 10~5, 10~4, 10~3.
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Figure 11. Continued

272 M. CARLEY
a jump on the z"0 plane for 0)r)1. In the results presented here, where the blade
loading decays to zero at the tip, the pressure is continuous across r"1. As this is a more
realistic condition than the "nite tip source assumed in the earlier studies of this type
[15, 16], it is an important result to note while interpreting data of the type presented here.
Even in the supersonic rotor case, where the asymptotic theory predicts that the blade tip
loading is not the dominant factor, it can, indirectly, have an in#uence on the character of
the "eld. As the far "eld is reached in the z"0)1 plots of Figure 13, the change in the noise
amplitude with l is not very pronounced; the essential properties of the "eld are the same in
each case.

In conclusion, the loading noise results show the same "eld structure as before [15, 16],
with the important caveat that the inclusion of a decay in loading near the blade tip removes
the abrupt change in pressure as the disc radius is crossed, an e!ect which is visible even in
the supersonic loading cases where the blade tip is not normally considered important.

5. CONCLUSIONS

A method has been developed for the e$cient, exact, numerical calculation of the acoustic
"eld radiated by a spinning distribution of sources in axial motion. The method, which is
quite general, has been applied to a study of propeller noise "elds, concentrating on those
parameters known from asymptotic theories to be important. The conclusions of the
asymptotic theories and of previous, more restricted, studies of this type have been
con"rmed and the technique appears to be a useful addition to the methods available to



Figure 12. Loading noise "elds for M
t
"1)05, M

=
"0)8, h"0. (a) l"1, contour levels $10~3, $10~2,

$10~1; (b) l"2, contour levels $10~3, $10~2, $10~1; (c) l"3, contour levels $10~3, $10~2, $10~1.
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researchers in propeller noise and should be a convenient method for industrial noise
prediction. Finally, it should be noted that, being based on the calculation of noise along
sidelines, the method is inherently parallel and transfers easily to multi-processor
computers.



Figure 13. Loading noise "elds for M
t
"1)05, M

=
"0)8, z"0)1. (a) l"1, contour levels 10~2, 10~1, 100;

(b) l"2, contour levels 10~2, $10~1, 100; (c) l"3, contour levels 10~2, 10~1, 100.
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Figure 13. Continued
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APPENDIX A: FORMULAE FOR J (r, r
2
)

In calculating the integrals I
c
, ¸

c
and Q

c
, the function J (r, r

2
) is required. Formulae for

this function have been derived previously [16] and are summarized here.
From Figure 2,
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Two di!erent cases must be considered, even n and odd n. First, for even n with n"2m
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the notation of reference [16] having been adopted.
Secondly, when n is odd and equal to 2m#1, we introduce a term r~1
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These integrals can be expanded into partial fractions and calculated in exact closed
form:
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For i"1 in the summations,
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When r is small, there are rounding errors due to incomplete cancellation of large powers
of t"r

2
/r. In this case, an in"nite series expansion in g"r/r

2
is used:
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